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14.1 Introduction
Medical image analysis has gained a lot of attention in the clinic. With the help of
modern algorithms, computer-aided diagnosis assists doctors to deal with the large
variations in pathology and intra- and inter-observers. Deep learning together with
the high computational ability converts the human-designed features to a learning-
based feature extraction process. Even without prior knowledge about the domain,
the model can learn the meaningful features directly from data [1]. Therefore, a
large amount of data are required to build the deep learning algorithms for learning
a hierarchical feature representation. High accuracy by using a large dataset makes
convolutional neural networks (CNNs) popular in medical image analysis tasks, such
as liver lesion classification [2], brain analysis [3], and retinal image analysis [4]. For
example, the method proposed by Google uses 1.28 million retinal images to train
their systems to diagnose diabetic retinopathy [5], while deep CNNs also achieve a
desirable result on skin lesion classification [6]. Unfortunately, such a large amount
of data with labels is not always accessible in practical medical applications. There
are two reasons which limit labeled data access in the medical image area. Firstly, it is
a time-consuming and tedious task that requires experienced experts to spend a long
time annotating. Secondly, it is also hard to get a desirable amount of disease images
in the applications as the diseases are not common. Based on the type of variance,
the features of images can be divided into two categories which are pertinent and
non-pertinent features, respectively [7]. In medical images, pertinent features contain
the most useful information to determine the organs or lesions, while non-pertinent
features are those which vary between images such as the intensity difference. For
most medical image applications, it is hard to build a large dataset, especially due
to rare diseases and patient privacy. Training small datasets is harmful to the model
to capture generalized pertinent features and may cause a performance drop due to
the overfitting problem. In order to avoid the problem of overfitting and improve the
performance of deep learning algorithms [8], researchers try to utilize data augmen-
tation techniques [9–12]. Data augmentation is a way that can remove non-pertinent
variance by feeding the model with different sources of data and it has been studied
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FIGURE 14.1

Summary of different data augmentation methods.

by the community to create more data for model training. In what follows, the works
on data augmentation will be discussed, including the efforts on computer vision and
medical image analysis. We will start from the traditional methods and end with the
generative adversarial networks. The summary of methods is displayed in Fig. 14.1
which contains the pros and cons of each method.

14.2 Traditional methods for augmentation
The early works augment data by applying simple transformations on original im-
ages, where the techniques include geometric transformations and color space trans-
formations.
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14.2.1 Geometric transformations
Geometric transformation is one of the conventional methods to augment data, which
aims to make the model invariant to the changes in position and orientation. Some
typical operations include rotation with a certain angle, horizontal or vertical flipping,
random patch cropping, scaling, shifting, and so on [13]. It provides a chance for the
model to learn invariance without additional labeled data [14].

The rotation is done by rotating the images following a specific direction and
angle between 0◦ and 360◦. This operation changes the angles of an object in the
images and helps the model to recognize the object with different angle locations.
For most of the cases, rotation can improve the model performance, while sometimes
it may not be a good choice when the direction of the object will influence the result,
e.g., the digit numbers six and nine. Horizontal flipping is much more commonly
used in retinal image analysis because usually there is a difference between right and
left eyes. By using this operation, the model can learn the appearance from either
left or right eyes without new data and labels. Random cropping is a technique to
create a subset of images from the original image. This operation does not change the
semantic information in the image but can provide a different situation of the object.
It helps the model generalize better because the objects can be located in different
positions and the contents are not the same in each cropping patch. Image shifting is
another useful transformation to alleviate the position bias in the training data. Let
us take optic disc segmentation in retinal fundus images as an example. When all the
training images are centered on the optic disc, the model should recall the positions
of optic discs in the center of the image. It will require the model to be tested on
this kind of image to get perfect results. Unsatisfactory results may be generated for
retinal images centered on the macular.

The geometric transformations are widely used in the augmentation of various
kinds of images. They are easily implemented and helpful to overcome positional
and angular biases. On the other hand, it is necessary when using geometric transfor-
mations to make sure the transformation has not changed the label of original images.
Due to the complexity of medical data, the positional variances created by geomet-
ric transformations are not enough in some applications, which is a limitation of this
method.

14.2.2 Photometric transformations
Another kind of data augmentation is carried on color space, which is called color
space transformation or photometric transformation. This technique aims to make the
model invariant to change of lighting and color. The color images have three chan-
nels, where each channel is with different pixel density. Lighting biases are the most
frequent challenges for image classification or segmentation tasks, which may cause
unsatisfactory results. To avoid this issue, one simple way is to edit the pixel with a
constant value to increase or decrease the density. In [15], the authors not only apply
geometric transformation but also change the values of RGB channels with a random
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scale to enlarge the variance. The work of [16] has evaluated pixel value shuffling,
which can help to improve the robustness of deep learning models. Krizhevsky et
al. [17] apply principal component analysis (PCA) on the training images and alter
the intensities of the RGB channels. They add the principal components with the
magnitudes of the corresponding eigenvalues and a random variable from the Gaus-
sian distribution. In [18], the authors randomly manipulate the brightness, color, and
contrast with an arbitrary value of [0.5, 1.5]. They add an additional lighting noise as
that has been done in [17]. This strategy has also been employed in [19] to augment
skin images for melanoma analysis.

Compared with geometric transformations, the photometric transformations in-
troduce other information which is illuminance and color diversity rather than spatial
information of the object. In most applications, color may not be the essential charac-
teristic and the improvement with color augmentation will be limited. Furthermore,
this kind of augmentation can be hardly useful in most medical imaging data, as the
radiology images are not sensitive to color.

The work of [20] has discussed the performance of several geometric and photo-
metric transformation methods on natural images with a CNN model structure. There
are also evaluations on medical image research [21,22] to discuss which augmenta-
tion technique is better. Interested readers may refer to these papers for more details.
Some researchers also use label propagation for data augmentation [23,24]. The idea
is based on Gaussian random fields, which allows the labels to be propagated to un-
labeled data. A weighted undirected graph is constructed by the label propagation.
The weights of graph edges reflect the similarity between the two data samples. By
this operation, the unlabeled data can also be used to train models, which can also
be regarded as a data augmentation method. Some researchers attempt to build a data
augmentation method automatically, such as [25–27], where a policy is learned to
choose which operation is suitable for the target dataset.

14.2.3 Augmentation on medical images
In this section, we will focus on the augmentation strategies on medical images.
Hauberg et al. [28] propose a learned data augmentation approach on a class by class
basis. They learn a probabilistic transformation model in the Riemanian sub-manifold
of the Lie group of diffeomorphisms. In [29], the authors utilize two non-linear trans-
formations called Simard transformation [30] and Ronneberger transformation [31]
to generate new training images and corresponding vessel ground-truths in retinal
fundus images. The new structures and scenes are created, and the generated images
and vessel annotations can be used as new training data by applying these opera-
tions. In [32], a patch-based augmentation method is employed on the retinal vessel
segmentation task, where random patches are selected for rotation, flipping, and nos-
ing on both image and ground-truth. They state that this kind of strategy achieves
a better performance than the usual operations. To augment the magnetic resonance
imaging (MRI) volumes for prostate image segmentation, Milletari et al. employ non-
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linear transformations by B-spline interpolation and histogram matching to vary the
intensity distribution of data [33]. Roth et al. [34] enrich 3D computed tomography
(CT) data by applying spatial deformations which include random translation, rota-
tions, and non-rigid deformations. The non-rigid deformation is computed by fitting
a thin-plate-spline to a regular grid of 2D control points and a deformed image can
be generated using a radial basis function.

14.3 Synthesis-based methods
Although the conventional augmentation methods increase the number of training ex-
amples and are easily implemented, these strategies are highly sensitive to the choice
of parameters [35] and have the limitation of emulating real variations [36]. In med-
ical image research, careful consideration of the application will lead to which types
of transformations are appropriate. For example, only sagittal reflection and intensity
augmentation are used in [37] for brain lesion segmentation. In [31], the elastic defor-
mations lead to the largest improvement for microscopy images, while this operation
may not be useful in brain images. In addition, some patient-specific variations may
not be removed by geometric transformations.

Besides the conventional methods which rely on existing images and apply trans-
forms to create new training data, some researches are carried out to explore gener-
ating new data with different content and appearance-looking combinations. We call
this kind of strategy a synthesis-based method in this chapter and it can be divided
into methods based on domain knowledge and data-driven mechanisms.

14.3.1 Conventional synthesis model
The conventional synthesis model is heavily based on domain knowledge. To syn-
thesize retinal fundus images, Fiorini et al. [38] focus on reconstructing the textural
background from scratch. The background is generated by a patch-based tiling algo-
rithm which is derived from the Image Quilting technique [39], where small examples
of existing images are stitched together to obtain the phantom. Then a model learn-
ing the distributions of key morphometric quantities from real images is employed to
reproduce optic disc on the retinal fundus. Finally, a model-based approach [40,41]
is utilized to generate the vascular structures, where the features of vessel trees are
included. The work of Menti et al. [42] aims to derive vessels and textures from real
data utilizing active shape contours and Kalman filter techniques. For the neuronal
images, GENESIS [43], NEURON [44], and L-Neuron [45] are the most well-known
efforts. GENESIS is a simulation method for constructing realistic models of neuro-
biological systems. It was one of the first simulation systems specifically designed
for modeling nervous systems. NEURON is developed similarly for modeling indi-
vidual neurons and neuron networks. L-Neuron is based on a set of recursive rules
that concisely describe dendritic geometry and topology through locally interrelated
morphological parameters.
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14.3.2 Generative adversarial networks
Leveraging the advances in generative adversarial networks (GANs) [46], some re-
searchers try to synthesize realistic image and label pairs from a random noise
vector that is generated from a simple distribution [7,47]. A generative adversarial
network provides a new potential way to augment data making it possible to cre-
ate augmented data without making decisions of which type to choose. Although
the variational autoencoders (VAEs) [48] allow generating images with controllable
latent variables, the synthesized samples tend to be blurry compared with genera-
tive adversarial networks. Nowadays, more efforts are put on GANs to synthesize
realistic-looking images. It has been suggested that GANs can have a significant
benefit when used for data augmentation in some classification tasks [2,49]. It can
also augment more challenging variance data such as lesion shape or size. By pro-
viding a sufficient number of training samples with different shapes and sizes, the
model will gain the ability to create samples with more variance. Performing the
same augmentation results by the conventional methods will lead to a very com-
plex model considering realistic shape, size, and the surroundings around the le-
sion. On the other hand, the generated image quality may be one disadvantage of
GAN compared with conventional augmentation methods. But this limitation has
less effect on improving the performance of other analysis tasks, as it has been
proven that fully realistic images are not compulsory [50,51]. Balancing the pros
and cons, the strategy using GANs is still an advanced method for data augmenta-
tion.

There are many efforts to utilize GANs to create artificial instances with similar
characteristics to the original dataset. In the work of [52], Antoniou et al. discuss
how the generative manifold can learn better classifiers and propose a class-based
generative model to learn a representation for data augmentation. A conditional GAN
is trained based on class-provided images with encoder–decoder model structure.
The model learns a meaningful representation of training data and encapsulates the
feature with a random vector engaging the variance to create extra augmented data.
A synthetic refiner network is proposed in [53] to improve the quality of simulated
images by GAN, where synthetic images created by the simulator are refined by the
generator which is optimized by adversarial loss and self-regularization loss. The
refined images are then used to train eye gaze estimation model.

In medical image research, some researchers explore image synthesis directly
from a noise vector, while others decide to generate augmented images based on
conditional information. The condition-based generative model has the potential
to synthesize rare pathological cases, where the conditional information could be
provided by medical experts through text descriptions or the masks of anatomi-
cal structures. All the attempts have shown the potentiality of GANs working on
medical image analysis as a data augmentation method. The GAN models can
offer an effective way to explore the manifold of training data and increase the
data variance, which is hard to augment by other methods. However, this kind of
augmentation cannot extend the distribution beyond the extremes of the training
data.



14.3 Synthesis-based methods 285

14.3.2.1 Synthesis without condition
Images generated without condition can also be known as unconditional synthesis,
where no extra information is provided to synthesize the data and the images are
generated directly from a random vector. The structure of deep convolutional GAN
(DCGAN) [54] is widely employed by researchers to generate augmented data from
random noise. In [2], the authors try to synthesize labeled lesions on CT scans for
each class of lesion separately, including cysts, metastases, and hemangiomas. Three
generators are employed for individual classes in their work. They find the generated
lesions are helpful to improve the sensitivity and specificity when the augmented
data are combined with real data. While this technique is also utilized for many
applications such as chest X-ray [49], lung nodule CT images [55], retinal fundus
images [56], and brain MR images [57,58]. In [56], the authors not only use the
discriminator to distinguish the fake from real but also take it as a segmentor. The
generated data together with the unlabeled data can be used to train the discriminator
(segmentor) to achieve a better segmentation performance. It has been stated that the
data generated from a random vector achieves a comparable quality to real ones on
MR images although there is still a discrepancy in anatomic accuracy [57]. A visual
Turing test has been carried out in [55] with two radiologists to evaluate the quality
of generated nodules as augmented data.

Due to the limitation of DCGAN to synthesize large size images, other generative
model structures have also been used for data augmentation, such as the Laplacian
pyramid GAN [59], Wasserstein GAN [60], and progressive growing of GAN [61].
Bowles et al. [7] investigate the application of GAN in different modalities of med-
ical images for the segmentation tasks as a way of data augmentation and compare
the performance with rotation augmentation. Their model is based on a progressive
growing of GAN, where the network can generate images with large sizes and stable
training progress by a progressive growing training strategy. The same idea is also
employed to create new training data for retinal fundus images with retinopathy of
prematurity by [62] and dermoscopic images in [63]. In [63], a single source of noise
is used instead of multiple sources for each scale and their model is trained in an end-
to-end manner. As an improved version of GAN [46], the Wasserstein GAN has been
used to improve the training stability and generate more plausible images. Several
works have taken advantage of this variant of GAN to augment data on different im-
age modalities, such as MR images [64], CT scans [65], histopathology images [66],
or dermoscopic images [67]. Fig. 14.2 displays the examples of augmentation appli-
cations using unconditional GAN.

14.3.2.2 Synthesis based on condition
Although synthesis from a random vector needs less labeled data to train the gener-
ative model, this type of image generation is not controllable and the image quality
is not satisfactory sometimes. To augment data with specific structure and position
of lesions or vessels, researchers tend to introduce additional information to the gen-
erator where the conditional generative model [72] is utilized in their augmentation
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FIGURE 14.2

Examples of applications using unconditional generative adversarial networks: (a) syn-
thesized chest X-ray image [49]; (b) dermoscopy images generated by [67]; and (c) liver
lesion images from [2].

FIGURE 14.3

Examples of applications using conditional generative adversarial networks: (a) CT image
generated from an MR image [68]; (b) 7T MR image and its 3T MR input [69]; (c) aug-
mented CT image and its input lymph mask [70]; and (d) synthesized retinal fundus image
and its corresponding vessel map [71].

models. In this kind of method, pix2pix [73] and CycleGAN [74] are two model
structures usually used to augment data. The pix2pix-based model is used for the
cases where paired or aligned data are available, while the CycleGAN-based model
is used to handle the tasks where no paired data are provided or the registration is
challenging. One of the most common applications for this augmentation strategy is
to augment data across modality such as from MRI to CT, or transformation from 3T
to 7T MR images. Another kind of application is to create new data from existing an-
notations, e.g., from labeled masks to images. In what follows, we will introduce the
work on these two kinds of applications with different data, while Fig. 14.3 illustrates
the examples of images generated by state-of-the-art methods.



14.3 Synthesis-based methods 287

It is well known that CT is a critical imaging modality for many medical applica-
tions, but it exposes patients to radiation during image acquisition. As MRI does not
involve radiation and is much safer than CT, the community is motivated to augment
CT data from MR images to help training segmentation or classification methods on
CT images. Within MR images, images acquired at 7T have a higher signal-to-noise
ratio and better tissue contrast compared to 3T MRI, which leads to a more accu-
rate disease diagnosis. However, 7T images are less available and may take a longer
time to acquire. This raised the interest of researchers to generate 7T images from
3T MRI data. Nie et al. [69] propose a fully convolutional network based generative
model to augment data from different sources with an additional constraint on the
gradient similarity between real and synthesized images to generate high quality re-
sults. To engage the global information into their generator, the auto-context model
is applied to achieve a context-aware GAN. To overcome the slice discontinuity and
blurry problem on the boundary, Yu et al. [75] propose an edge-aware GAN to cap-
ture the image structure information and voxel-wise intensity to improve the quality
of generated images. Besides the generator and discriminator, they investigate an
edge detector to offer more information to the generator. In [68], the authors find that
training with unpaired data with CycleGAN achieves better generated results than us-
ing the aligned images, where the reason is likely because the registration could not
handle local alignment well. Several works further improve the CycleGAN model
with extra loss and components. Hiasa et al. [76] extend the CycleGAN approach by
adding the gradient consistency loss to improve the accuracy at the boundaries. The
shape consistency loss is employed in [77] to avoid the geometric distortion, where
two segmentors are utilized to extract semantic labels and the shape constraints on the
anatomy during translation for both modalities. Other works [78,79] follow a similar
idea but apply the segmentor to only one modality. Besides the works above, many
papers have published cross-modality image synthesis approaches aiming to gener-
ate CT, positron emission tomography and MR images [80–85], but also different
sequences in MR images [86–90]. Interested readers may refer to them for further
reading.

Synthesizing images from labeled masks is another way to avoid the problem of
lack of annotated data. The synthesized images together with their corresponding
labeled masks can be regarded as new annotated training data. The authors in [91]
propose a method to generate synthetic image–label pairs by learning the generative
models of deformation fields and intensity transformations. Two generators are used
for the deformation field and intensity field respectively. The deformation field gen-
erator creates a dense pixel-wise deformation field for both image and ground-truth.
The intensity field generator generates an intensity mask to change the pixel intensity
of an image. Tang et al. [70] utilize pix2pix GAN [73] to synthesize a large number of
CT-realistic images from customized lymph node masks, where the model can learn
the structural and contextual information of lymph nodes and surroundings. They
state that by using the generative model, the augmented data achieves more diverse
results than the ones generated by affine transformations. The simple pix2pix model
is utilized in [47] to synthesize abnormal brain MR images from tumor labels. They
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illustrate that the tumor segmentation model gains an improvement when leverag-
ing the synthesized images as augmented data and achieves comparable results when
trained only on the synthesized images. Mok et al. [92] use conditional GAN to aug-
ment training images for brain tumor segmentation. The generator is conditioned
on a segmentation map and generates brain MR images in a coarse-to-fine manner,
which also outputs tumor boundaries in the generation process to ensure the tumor
is well delineated with a clear boundary in the generated image. Zhao et al. [93]
generate labeled examples by using learning-based registration methods leveraging
unlabeled images on brain MRI data. They employed two generators to learn spatial
transformation and appearance transformation separately, where the anatomical and
imaging diversities are captured in the unlabeled images. The new training exam-
ples are synthesized by sampling transformations and applying them to the existing
labeled examples. A stylized GAN is proposed by [71], where the retinal fundus im-
ages and neuronal images are generated from the vascular or neuronal structures. A
perceptual feature descriptor is introduced to extract content features and style fea-
tures for the generator to synthesize stylized retinal images based on the input of style
reference. As an improved version of [71], the authors in [94] propose a recurrent
generative model to synthesize different style images within a single model, where
the gated recurrent unit is engaged to control the information flow of different styles.
The synthesized images have been used to train a supervised vessel segmentation
model without annotated data. Instead of augmenting healthy retinal images, Zhou et
al. [95] try to synthesize images with diabetic retinopathy. The proposed model is
conditioned on vessel and lesion masks with adaptive grading vectors sampled from
the latent grading space, which can be adopted to control the synthesized grading
severity. To increase the quality of generated images, a multi-scale discriminator
is designed to operate from large to small receptive fields. Finally, their model has
achieved a charming result of synthesizing diabetic retinopathy images with rather
high resolution and quality.

14.3.3 Pros and cons of synthesis methods
Compared with traditional augmentation methods, synthesis-based augmentation in-
troduces a way to explore the features of existing data beyond the superficial in-
formation. It offers samples that do not appear in the training set but belong to the
distribution. New contents are provided in the augmented data making the images
more meaningful and powerful to improve model performance than the simple geo-
metric and photometric transformations. However, the synthesis-based methods have
their limitations. The conventional synthesis model is heavily based on prior knowl-
edge and needs to be well designed for each component. Take the retinal fundus
synthesis as an example. The conventional method needs to consider the orienta-
tion and branching of blood vessels to build a skeleton tree. The width of vessels on
different locations should also be determined by a separate model with the texture
appearance designed following other rules. All the processes make the conventional
methods complicated and only usable for certain applications. On the other hand, the
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GAN-based synthesis models are more flexible. They are constructed by data mining
and learn to generate new images from either a random vector or a map. However,
such models are not easy to train and require more data than the conventional synthe-
sis method, which restrains their usage on a rather small amount of data. Compared
with the conditional synthesis model, the unconditional GAN model can be easily
used to synthesize additional data with only images required. It is much more con-
venient when it is hard to obtain images with mask annotations due to the laborious
and time-consuming work in the medical imaging area. In general, the unconditional
model cannot synthesize large size with fine details and it is harder to train than the
conditional one. Although the BigGAN [96] provides the ability to generate high
resolution images with a random vector as input, it requires a large amount of com-
putational resources to achieve the goal. In addition, the content of generated images
by the unconditional model cannot be controlled. Given a random vector, the GAN
is not able to predict what the synthesized image will be like. On the other hand,
the conditional model achieves higher resolution and an easy training process with
the help of additional information that further guides the direction of the synthesized
content. These advantages make the conditional GAN-based methods become a more
and more popular data augmentation way in most applications.

14.4 Case study: data augmentation for retinal vessel
segmentation

In this section, a concrete example is given on retinal vessel segmentation to show
how the augmentation method works on medical imaging analysis tasks.

Retinal vessel segmentation is a fundamental step in retinal image analysis. There
is only a small set of annotated retinal image datasets available, e.g., DRIVE [97]
contains 40 pixel-level annotated images and STARE [98] consists of 20 images with
segmentation maps. Moreover, lots of the retinal fundus image datasets do not have
any vessel segmentation. This situation is also faced by clinical practice. Lacking
annotated training data on retinal images limits the usage of vessel segmentation
methods. In the case of missing labeled training data, the most common solution
is training the model with the existing annotated dataset and testing directly on the
images. However, the performance usually drops significantly due to the discrepancy
between different datasets. Table 14.1 and Fig. 14.4 show the performance of a super-
vised segmentation method (i.e., Deep Retinal Image Understanding (DRIU) [12])
pretrained on DRIVE and tested on STARE. The quantitative results show that the
model trained on the existing labeled dataset, e.g., DRIVE, seems not to perform
well on a new test set, e.g., STARE. Moreover, the performance of pretrained DRIU
model is even worse than an unsupervised model, i.e., Multi-Scale Line Detector
(MSLD) [99]. Fig. 14.4 displays the visual segmentation results of the two methods.
The pretrained DRIU method has more false negative pixels compared with MSLD,
which illustrates that the pretrained model with images from other datasets may not
achieve a better performance than the unsupervised method. The experimental re-
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Table 14.1 The performance of a supervised (DRIU) and
unsupervised (MSLD) method on the STARE test dataset
with F1-score (%), sensitivity (%), and specificity (%).

F1 Sensitivity Specificity
DRIU trained on DRIVE 68.32 67.12 98.03

MSLD 77.74 74.15 98.63

FIGURE 14.4

The visual segmentation results of the pretrained supervised segmentation method (DRIU)
and the unsupervised method (MSLD).

sults have shown that the discrepancy between different datasets does not allow a
pretrained supervised model to achieve a satisfactory performance on another dataset.

To solve this problem, we select a conditional GAN-based method as the data
augmentation way to generate images with the appearance of given data. The syn-
thesized images together with the existing labels are used to train the supervised
model to obtain a higher performance on the test set. The process can be divided into
two steps as shown in Fig. 14.5. Step 1 focuses on the construction of a synthesized
dataset with the desirable style appearance, while step 2 proceeds to learn a super-
vised model based on the generated images. In step 1, the synthesis method is built
based on recurrent generative adversarial networks (R-sGAN) [94]. It takes random
vessel trees as conditional information input and outputs the generated retinal fundus
images. One of the biggest advantages of this method is that it is able to generate
images with different style appearances. In what follows, we will give an introduc-
tion on how to use R-sGAN to generate new data for vessel segmentation. Interested
readers may also refer to [94] for detailed information.

The core component of R-sGAN is the GRU module which consists of genera-
tor gate, reset gate, and update gate. The generator G of GAN is incorporated as the
generator gate and the discriminator D is utilized as a part of losses. Each time point
τ is treated as a cell of GRU with the input of current vessel trees yτ and cell state
hτ−1 while generating different style retinal images. The style information is stored
in the cell state when training the model. As shown in Fig. 14.6(b), GRU consists
of three parts: generator gate, reset gate, and update gate. The reset gate and update



14.4 Case study: data augmentation for retinal vessel segmentation 291

FIGURE 14.5

The flowchart of data augmentation on retinal vessel segmentation application.

gate control the information flow and the generator gate combines the current vessel
structure and cell state to generate new images. By introducing different style refer-
ence images in the training stages, the model obtains the ability to synthesize multiple
styles in different time states. Concretely, the reset gate and the update gate share the
same fully convolutional network (FCN) structure but for different purposes, which
are calculated by

rτ = σ
(
f γ

(
yτ ,hτ−1

))
, uτ = σ

(
f μ

(
yτ ,hτ−1

))
, (14.1)

where f γ and f μ are the FCN modules and σ is the sigmoid activation function. The
cell state after the reset gate is changed to

h̃τ−1 = rτ ⊗ hτ−1, (14.2)

where ⊗ indicates the element-wise multiplication. The generator gate takes the new
cell state h̃τ−1, vessel structure yτ , and a noise vector zτ as inputs and learns a
mapping by a U-net-structured convolutional neural network G,

x̃τ = G
(
yτ , h̃τ−1,zτ

)
. (14.3)

By merging the signals from these three gates, the output becomes

hτ = (1 − uτ ) ⊗ hτ−1 ⊕ uτ ⊗ x̃τ , (14.4)
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FIGURE 14.6

Model structure of R-sGAN: (a) the overall synthesis process; (b) detailed information of
GRU network; and (c) the loss functions used to train the model.

where ⊕ refers to element-wise addition. With the help of reset gate and update gate,
the GRU cell is able to capture the different styles and maintain the vessel structures
over the sequence of time states.

Fig. 14.6(c) displays the main loss functions to train R-sGAN, which contain the
adversarial loss, style loss, and content loss. The adversarial loss is used to guaran-
tee the images are with a realistic appearance, which is trained by minimizing the
following function:

Ladv = −
∑
τ

logD
(
hτ ,yτ

)
. (14.5)

The style loss is engaged to evaluate how faithful the synthesized images is with re-
spect to the style reference, while the content loss is used to enforce the generated
images maintaining the vessel structure as the conditional information. These two
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losses are calculated based on the feature representation generated by feature net-
work (e.g., VGG [100]). For the style loss, the Gram matrix Gl = (gl

mn) is utilized to
capture the textural representation, which is defined as the inner product between the
mth and nth vectorized feature maps in the lth layer,

gmn =
∑

k

φ′
mkφ

′
nk, (14.6)

where φ′ is the vectorized version of feature map φ in feature network. With the style
representation Gl the style loss can be defined as

Lsty =
∑
τ

∑
l

∥∥∥Gl (xτ ) − Gl (hτ )

∥∥∥2
, (14.7)

where xτ is the style reference image. Similarly, the content loss is calculated based
on the difference of feature maps between the generated image and the vessel struc-
ture content, which is defined as

Lcont =
∑
τ

∑
l

∥∥∥φl
(
xc

τ

) − φl (hτ )

∥∥∥2
, (14.8)

where xc
τ stands for the image providing the vessel structures. With all the com-

ponents above, R-sGAN can generate realistic-looking retinal images with specific
style appearance. This characteristic facilitates the segmentation method on the ap-
plications with less data or even no annotated data for training.

In Fig. 14.7, the augmented images generated by R-sGAN are displayed. The gen-
erated images maintain the vessel structures while obtaining the appearance-looking
of style reference images from the test set. The segmentation performance improves
with a significant margin by using the generated images as augmented inputs to train
the supervised model. The quantitative results are shown in Table 14.2, while the
visual results are shown in Fig. 14.8. Compared with the pretrained model, DRIU
trained with augmented data generated by R-sGAN achieves superior performance
with less false alarm and false positive points. To further reveal how large data aug-
mentation benefits will be achieved in the segmentation tasks, visual comparisons
on more challenging datasets will be presented. Fig. 14.9 displays the segmentation
results of pretrained DRIU, DRIU trained with augmented data, and MSLD on Kag-
gle dataset [101] and images captured by mobile device [102]. In the Kaggle dataset,
there is noticeable variability in contrast and luminance, mostly due to the presence
of diabetic retinopathy. For the images captured by mobile devices, the imaging qual-
ity may differ a lot due to the less experienced user and lead to low quality and poorly
illuminated fundus images. On these two datasets, the pretrained DRIU model and
MSLD method cannot obtain satisfactory results, either by capturing the lesion or
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FIGURE 14.7

Two exemplar images generated by R-sGAN with vessel structures from the DRIVE dataset
and style references from the STARE dataset.

Table 14.2 The performance of DRIU models with different
training strategies on STARE dataset with F1-score (%), sensi-
tivity (%), and specificity (%).

F1 Sensitivity Specificity
DRIU trained on DRIVE 68.32 67.12 98.03

DRIU trained on augmented data 79.60 79.49 98.36

FIGURE 14.8

Visual segmentation comparison of the supervised segmentation models (DRIU) with differ-
ent training strategies.

missing the vessel structures. On the other hand, the model trained with augmented
data achieves a better result with main vessel trunks and some detailed branches will
less false alarm even on the blurry and less visible images.
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FIGURE 14.9

Visual segmentation comparison of the supervised models (DRIU) with different training
strategies.

14.5 Research challenges and future work
Benefiting from the generative adversarial network, the augmentation methods have
moved to a new stage. However, there are still challenges that need to be solved in
medical imaging. Image quality is the most important thing in GAN-based methods
to generate augmented data. Although most of the generated data have the desired
appearance, the anatomic structures may not match with the clinical situation, such
as the optic disc shape in the retinal fundus images or the appearance of tumor in
brain MR images. The structure may be good enough from the image point of view,
but the augmented image may be a failure case in the clinical sense. How to augment
data with clinically meaningful structure is a future work to be explored. Most of the
generative models gain good quality of augmented images by training with paired
data where extensive labeling work needs to be done in order to create the training
dataset. Some works utilize CycleGAN to loose the restriction where an unpaired
translation is performed, while most of the recent works focus on synthesizing im-
ages from existing ground-truth. There is little work trying to augment ground-truth
data. For some applications, such as retinal images or neuronal images, vascular or
neuronal structures contain the most useful information. So augmenting the vascular
or neuronal ground-truth is very helpful to create new data and it provides more po-
tential for the generative models to learn the essential structures in this type of image.
Another new direction is to augment data not only in the image space but also in the
feature space, which works like domain adaptation. Finally, there is no effective way
to measure the quality of generated images. Some of the traditional evaluation met-
rics such as structural similarity index measure and peak signal-to-noise ratio can be
used for paired data evaluation, but the results do not always correspond to the real
visual quality or match visual conception of the human. Interested readers may refer



296 CHAPTER 14 Data augmentation for medical image analysis

to Chapter 25 for more information. The way to validate the augmented data by clin-
ical experts is another choice but expensive and time-consuming. Thus the validation
metrics of the generated images remain to be explored.

14.6 Summary
In this chapter, we have reviewed the augmentation methods used in medical image
analysis. Deep learning methods in medical image analysis achieve a significant per-
formance in many applications. However, they rely on a large amount of data to train
the model to avoid overfitting problems and improve the model performance. Data
augmentation is a very useful strategy to create a large dataset with variance, which
agrees with the situation that labeled data in medical imaging is very limited. Several
kinds of augmentation methods have been discussed, including conventional meth-
ods such as image rotation or flipping, and methods based on synthesis. Benefiting
from the development of generative adversarial networks, the quality and variance of
augmented data are substantially improved. Models trained with the augmented data
obtain a higher performance in medical image analysis. The augmentation in medical
image analysis has a bright future but comes with challenges that need to be explored.
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